Java Performance Tuning
Java(TM) - see bottom of page
Our valued sponsors who help make this site possible
JProfiler: Get rid of your performance problems and memory leaks!
Training online: Concurrency, Threading, GC, Advanced Java and more ...
Tips February 2015
JProfiler
|
Get rid of your performance problems and memory leaks!
|
JProfiler
|
Get rid of your performance problems and memory leaks!
|
|
|
Back to newsletter 171 contents
http://blogs.mulesoft.org/performance-impact-io-intensive-app/
Performance Impact of an IO-Intensive Application (Page last updated November 2014, Added 2015-02-28, Author Ross Mason, Publisher mulesoft). Tips:
- Application performance degrades when disks get stressed.
- Disabling file system journaling is unlikely to provide any speedup because the journal file is in the same block as the file to be written.
- The bottleneck of an IO-intensive app is normally when the system flushes the dirty pages to disk.
- A 15K RPM disk could reach a bandwidth of 120MB/sec in the best case of sequential access. A typical flush policy interval would be 30 seconds. If an application wrote 600MB before triggering a flush, the flush would take 5 seconds (best case) or more, during which the page cache is used exclusively and disk IO is maxxed.
- On Linux the disk queue length is the "Writeback" value in /proc/meminfo or the "avgqu-sz" in sar.
- If an application thread is writing while the kernel is flushing and a GC starts at this time, the GC cannot proceed until the flush completes which then lets the application thread proceed to a safepoint. This can make a long pause (in the GC log, you would see a long pause but not very much usr nor sys time).
- With Linux, various swappiness values (including the likely default) causes IO when the system comes under memory pressure, to make room in the page cache - and the swapped pages have to be swapped back in too. Disabling swappiness (by setting it to 0 in /proc/sys/vm/swappiness) would make the kernel flush the dirty data more frequently which will in turn increase the IO pressure potentially making IO worse.
- Review the kernel's flushing policy for your specific IO workload - adjust /proc/sys/vm/dirty_expire_centiseconds and /proc/sys/vm/dirty_background_ratio .
- Storing frequently accessed files on different devices can help avoid the problem of a single congested device queue.
- SSD has 6 to 7 times the bandwidth of a spinning disk but it occasionally needs to do data compaction, the impact of which could be bad.
- A logical volume manager introduces a small latency overhead that is not negligible when SSD is used.
- Always avoid unnecessary disk access.
http://www.javacodegeeks.com/2015/02/top-10-common-java-performance-problems.html
Top 10 Most Common Java Performance Problems (Page last updated February 2015, Added 2015-02-28, Author Theodora Fragkouli, Publisher javacodegeeks). Tips:
- Eager fetching produces fewer remote requests but they are more complex so individually slower.
- Lazy fetching produces more remote requests but each is simple and fast.
- In-memory data is faster to access than persisted data, so caching improves performance. Caches must be properly configured so as not to exhaust memory; and hit/miss ratios monitored to ensure they are effective.
- Distributed caching requires cache updates to be propagated but this has overheads which in some situations can make the cache less effective than no cache.
- Pool size is important: too few connections make transactions wait; too many connections can cause database overload giving longer response times. Check how long the application waits to acquire a connection from the pool, and optimise database communications and database structure to minimizae communications.
- Basic bad garbage collection (GC) symptoms are CPU spikes and bad application performance. Produce and monitor GC logs, and configure heap size and where necessary schedule JVM restarts.
- Monitor the heap for memory leaks - increasing the heap may be a sufficient solution, otherwise you need to analyse the heap to determine the leak.
- Deadlocks occur when two or more threads are trying to access the same set of resources and they are each waiting for another one to release a resource. Diagnose deadlocks by getting a threaddump.
- Thread gridlocks occur when too much synchronization makes the threads wait in turn for a single resource. Symptoms include slow response times and low CPU utilization. Diagnose gridlocks by getting a threaddump to see where threads are waiting to acquire a resource..
- Check thread pool utilization and CPU utilization and decide whether to increase or decrease pool sizes: too small a pool will make requests wait to be served; too large a pool will cause CPU overload again slowing down overall request service time.
https://www.ibm.com/developerworks/linux/library/j-zerocopy/
Efficient data transfer through zero copy (Page last updated September 2008, Added 2015-02-28, Author Sathish K. Palaniappan, Pramod B. Nagaraja, Publisher IBM). Tips:
- Each time data traverses the user-kernel boundary it must be copied, which consumes CPU cycles and memory bandwidth.
- A zero copy request (eg FileChannel.transferTo) has the kernel copy data directly from disk to a socket without going through the application, improving application performance and reducing context switches.
- In applications that do a great deal of copying of data between channels, a zero-copy technique can offer a significant performance improvement if one of the channels is a FileChannel.
http://www.infoq.com/articles/Tuning-Java-Servers
Tuning Java Servers (Page last updated November 2014, Added 2015-02-28, Author Srinath Perera, Publisher InfoQ). Tips:
- Use profiling to solve three goals: Improve throughput; Improve latency; Find and fix leaks.
- Your goal is to achieve maximum throughput while keeping the latencies within acceptable limits.
- Application performance is decided by the scarcest resource in the system (the bottleneck).
- Server performance is limited by one of: CPU; IO; Waiting to acquire reources.
- Unix "Load average" represents the number of processes waiting in the OS scheduler queue. Load average will increase when any resource is limited (e.g. CPU, network, disk, memory etc.). A load average of more than 4x number of cores is a (too) high load.
- If performance targets are not being met and the machine has unused capacity, you should: test increase concurrent request load; check for locks; increase thread pool size; check the network has additional capacity.
- If performance targets are not being met and the machine is fully loaded, you should: check for other processes loading the machine; CPU profile the application if its CPU usage of the application is high; check if garbage collection is taking more than 10% of application elapsed time; check for IO load; check if the machine is paging.
- If you have tuned a server and still not reached acceptable performance for given concurrent loads, you can either consider scaling horizontally or a redesign.
- Disk access, network access, and locks are common causes of long-running operations causing high latency.
- To reduce IO impact on latency: Avoid unnecessary IO operations; batch IO operations; prefetch data.
- Avoid synchronized blocks and locks as much as possible - concurrent data structures from java.util.concurrent package can help.
- Try to release locks as soon as possible after acquiring them; minimize long-running operations such as IO while holding a lock.
https://plumbr.eu/blog/improving-lock-performance-in-java
Improving lock performance in Java (Page last updated January 2015, Added 2015-02-28, Author Vladimir Sor, Publisher plumbr). Tips:
- Lock contention occurs when thread A is trying to enter a synchronized block/method currently executed by thread B; thread A has to wait until thread B exits the synchronized block, thus releasing the lock.
- Synchronization in the JVM is optimized for the uncontended case (a thread entering a synchronized block where it already owns the lock) and this case poses almost no overhead during execution.
- Surround data access and updates with locking, not full code. In particular, synchronizing the whole method might lock for too long, instead synchronize just the block that handles data.
- Lock only what is necessary, minimize the scope of the locked block.
- Use a lock that is specific to the data being operated on; multiple locks for each data item is more scalable than one lock being used across multiple different structures.
- Concurrent data structures (like ConcurrentHashMap) which are designed to minimize or avoid locks tend to be a useful alternative to let you avoid or minimize locking.
- Only expose access to locks for the code that needs that access.
- Atomic operations let you avoid the need for a lock.
http://java.dzone.com/articles/biglist-scalable-high
BigList: a Scalable High-Performance List for Java (Page last updated November 2014, Added 2015-02-28, Author Thomas Mauch, Publisher DZone). Tips:
- A memory efficient data structure should: minimize the overhead of the structure itself; store primitives efficiently; avoid copying large chunks.
- It is not possible to make a copy of a huge collection because of memory limitations; such collections need to efficiently provide views on the underlying data without copying or altering the data.
- If building a segmented block data structure where elements can be added, it is efficient to leave spare capacity in a block to allow inserts to be performed without having to split the block on each insert.
- JVM is fast in boxing and unboxing primitive values, but garbage collection overheads can make it dramatically slower.
Jack Shirazi
Back to newsletter 171 contents
Last Updated: 2024-08-26
Copyright © 2000-2024 Fasterj.com. All Rights Reserved.
All trademarks and registered trademarks appearing on JavaPerformanceTuning.com are the property of their respective owners.
Java is a trademark or registered trademark of Oracle Corporation in the United States and other countries. JavaPerformanceTuning.com is not connected to Oracle Corporation and is not sponsored by Oracle Corporation.
URL: http://www.JavaPerformanceTuning.com/news/newtips171.shtml
RSS Feed: http://www.JavaPerformanceTuning.com/newsletters.rss
Trouble with this page? Please contact us